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Geodynamics and ice sheets:

Mass Diffusion  
Mass AdvectionPe = 

Low Peclet number:

Ice sheets (nearly) barotropic 

Ice sheets don’t conserve mass 
(mass added and removed)

Key differences:

Friction, earthquakes and 
granular materials, flexure, 
etc.
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Ice sheet dynamics

Bed rock/till

ocean

interior: laminar flow

ice-sheet 

ice-shelf 

ice-streams,outlet 
glaciers, etc

exterior: `plug’ flow

transition zone: flow is intermediate 
between laminary and plug
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Shallow-ice approximation (SIA):
 

1 −
zs − z

h

n +1

u(z) ~

Shallow-stream approximation (SSA):
 u(z) ~ 1

‘Blatter’ 
u(z) ~ f(z)

Goal:  Describe transition from SIA 
to SSA 
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A simple approximation

Bed rock/till

ocean

ice-sheet 

ice-shelf 

Start with Hamilton’s Principle:

δL = 0 

Multiple (equivalent) approaches to mechanics:  
(Newtonian, Lagrangian, Poisson Brackets, . . .)

 L = 
t2

t1
(kinetic energy - potential energy)dt

dU = TdS + dW

dW = PdV + dΓvisc + dΓfric
constant entropy

Dissipation of gravitational potential = 
energy 

L[u] = functional of u to be minimized 

viscous + frictional dissipation
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Assume velocity of the form:
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ε(x) = ßh
µ



(Non-dimensional) Diagnostic and Prognostic Equations

∂h
∂t + ∂

∂x [h (u−uSIA)] − ∂
∂x D ∂h

∂x = M
Non-shallow ice flux shallow ice flux

∂
∂x c1 (x)

∂U
∂x + c2(x)U = h ∂zs

∂x + -2β U

Transition from SIA to SSA introduces 
‘quasi-boundary layers’
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Time Integration: Mixed Eulerian-Lagrangian Methods

Allow integration points to advect as Lagrangian tracers
Create/destroy tracers to preserve accuracy
Can view tracers as discrete mass - mass is conserved exactly

nodes migrate

Advantages:
Lagrangian advection of information (no fake 
diffusion)
Re-meshing is intepolation free (nodes don’t get 
moved)
Easy to deal with evolving free surfaces

Disadvantages:
Resolution migrates
Ad-hoc rules to add/subtract nodal points
Boundary conditions can be problematic
Need about 2x as many grid nodes 



Grounding line migration:  ‘Particle Method’

Represent grounding line as a quasi-particle - a ‘groundon’
Grounding line migration - find groundon trajectory

grid nodes

Grounded ice Floating ice

moves here

Evolution equation for each groundon:
dg1 = 
dt

f1(t) 

Solve simultaneously with advection-diffusion eqn.

groundon
starts here



Grounding line migration:  ‘Enthalpy Method’

Analogy with diffusion problems with moving phase boundaries
Consider floating ice and grounded ice to be different phases

`Phase’ boundary between grid nodes

grid nodes

Grounded ice Floating ice

Boundary has to advance/retreat one discreet grid point at a time

could be here or here

Introduce parameter f (varies from 0 to 1) = Volume of ice in grid
Volume to ground entire cell

Track flux of ice into each grid over time - removes some of hysteresis 
problems
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Challenge: Identify and parameterize the `barrier’ processes 
that limit our understanding
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